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Financial crisis 2007 - 2008

08/09/2007 — BNP Paribas limits withdrawals,
03/16/2008 — Bear Stearns acquisition,
09/15/2008 — Lehman Brothers bankruptcy,
09/16/2008 — § 85 billion loan to AIG,
10/09/2008 — Interest on reserve balances, ...

» Rare events
» Contagious effect (cascading, snowball, herding behavior)
to the whole economy.

How can we prepare for a future financial crisis?



Model Inter-bank Lending Market

Interbank lending market is an institution for banks to lend
money.

» When funding of a bank is not available enough, the bank
borrows in overnight markets for immediate needs.

» If required collateral is too high, it fails.

» Deficits of banks spread among banks along with monetary
flow.

How can we model such an interbank lending market?

» Network model, Cascade and contagious process from
Epidemics, Engineering and Physics.

> Intensity based models.

» Here we approximate it by a diffusion model with lending
preferences.



On (Q,F,F := (F¢)t>0,P) let us consider a banking system
X :=(X(t):=(Xa1(t),...,Xn(t)),0<t < 00) of n(>2) banks.
X;(t): monetary reserve of bank : at time ¢ with SDE

1=1,...,n, 0<t< 0.

e Here W := ((Wi(t),..., W4(t)),0<t < o0) is the standard
d-dimensional Brownian motion, §; is a nonnegative constant,
x:=(X1(0),...,Xn(0)) €[0,00)" is an initial reserve and
e p;;:[0,00)" — [0,1] is bounded, a-Hdlder continuous on
compact sets in (0,00)" for some « € (0,1].

n

o a() == (ay(-)) = (owoj)(-) is strictly positive definite,
k=1
a-Holder continuous on compact sets for some a € (0,1].
a4



Proposition In addition to the assumptions assume that there
exists a constant co(c, d) > 0 such that
n

a() = (aw()) = Z(Uzkajk)() satisfies
k=1
Z|alk($)‘ < comina;(z); =z €0ORY,
i#k ¢
then the weak solution (X, W),(Q,F,F,Px) exists and is
unique in the sense of probability distribution.

Proof is in BAss & PERKINS ('03) based on a martingale
problem with a perturbation argument.
» SHIGA & SHIMIZU ('80), Cox, GREVEN & SHIGA ('95)
consider 6; =0, p;;,04 are constants yet in the infinite
dimensional case.



Simplification

X(8)= X+ [ [8: D06 ()~ Xu(w))- by (X ()] dw
j—1

t
-1-2/0 VXi(w)d Wi(u); t=1,...,n, 0<t< 0.

» Individual drift ;. Simpler case d; := §/n > 0.

» If bank 5 has more reserve than bank 3, that is,
X;(t) > X;(t) at time t, there is a monetary flow from
bank j to bank 7 proportional to the preference p; ;(-).
A Discontinuous or heterogeneous p; ;(-), rank-based
coefficients 7

A Remove from the system upon default? — We will see later.



Xi() = X(0)+ [ 2 4 305 () - Xa(w)-pus (X ()] d
1=1

¢
—|—2/ Xi(uw)d Wi(u); 1=1,...,n, 0<t<o0.
X wiw)

» The random shock /X;(-) W;(-) with variance
proportional to its size.
A correlated BM 2¢_, /X;(oaw(X () Wi(-) might lead
more interesting phenomena
(IcHIBA & KARATZAS (2010)).
A Interaction and feedback effects with other economic
sectors as in real financial crisis ?



When p;;(-) = pj:(-) for 1 <1,7 <n, we observe for z € R

ZZ ply] ) Z(fl: pz,j ‘1‘2 pw ):0.

1=1j5=1 1<J j<i



When p;;(-) = pj:(-) for 1 <1,7 <n, we observe for z € R

ZZ ply] ) Z(fl: pz,j ‘1‘2 pw ):0.

1=1j5=1 1<J 1<

The total reserve X(-):= 1~ ; X;(:) in the system satisfies

X(t) = +6t+2/ Z,/ u)d Wi(u); 0<t<oo.



When p;;(-) = pj:(-) for 1 <1,7 <n, we observe for z € R
ZZ ) pij(x) =) (x5 —2:) pig(@)+ ) (2 — i) piy(z
1=1j5=1 1<J 1<

The total reserve X(-):= 1~ ; X;(:) in the system satisfies

X(t)=Xx(0 +6t+2/ Z,/ u)d Wi(u); 0<t<oo.

By possibly extending the probability space and introducing
another Brownian motion f(:), we obtain a squared Bessel
process of dimension 4:

%(t):%(O)+6t+2/0t\/%(u)d,3(u); 0<t< 00

z)

0.



Properties of total monetary reserve X(-) = =™ ; X;(+)

By the property of the squared Bessel process if § > 2 the total
reserve X(-) never achieves zero:

Py (X(t) > 0, for all ¢t € [0,00)) =1;

If§ >1, Py(limsupX(t) =00)=1;

t—o0
If6 =2, Py( inf X(s)=0)=1; x€(0,00)".
0<s5< 00
If 0 <4 <2, the point {0} is instantaneously reflecting.
If § =0, the total reserve attains zero in a finite time and stops
thereafter almost surely.



Proposition. If the lending preferences {p;;(-),1<1,7 <n}
satisfy
(2—8)n+dk

sup |z — ;|- ps () < =:2¢cg; 1<14,j<n,
a:E[O,oo)”| ' ]| w n(n—l)(n—k)

then every bank except less than or equal to k& banks is
bankrupt together at some time ¢ € (0,00) almost surely for

ke{k|(2-6)n+dk>0}n{1,...,n -1},
that is, for every choice ({1,...,€n—%) of (n—k) banks,
Py (Xe, (t) = Xo,(t) == X, (t)=0, for some ¢ € (0,00)) =1;

for x €[0,00)".
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Proposition. If the lending preferences {p;;(-),1<1,7 <n}
satisfy
(2—8)n+dk

sup |z — Zj| - pi () <
a:e[O,oo)”| ]| ]( ) TL(TL—].)(

then every bank except less than or equal to k& banks is
bankrupt together at some time ¢ € (0,00) almost surely for

ke{k|(2-6)n+dk>0}n{1,...,n -1},
that is, for every choice ({1,...,€n—%) of (n—k) banks,
Py (Xe, (t) = Xo,(t) == X, (t)=0, for some ¢ € (0,00)) =1;
for x €[0,00)".
Proof is based on comparison theorem by IKEDA & WATANABE

(1977). The sum X, x( Z X, (+) is dominated by a

squared Bessel process with dlmensmn

5 —k n—k n
) JE 3w peste <2



Note that there are possibly many choices of the lending
preference that satisfy the above inequality. For example,

pii()=0; 1<¢,5<n.
Another example is

2($1Azj)/(zl+zj)2 if z; +2; > 1,

pij(z) 1-2(z Azj) ifo; Az >1/2,1/2< 2 4+2; <1,
. 2(z +zj) -1 ife;Ag; <1/2,1/2< 243 <1,
0 otherwise,

where the constant c¢; is less than cg.

11



Similarly, given a nonnegative function A :[0,00) — [0,1] which
is a-Holder continuous on compact sets in (0,00) for some
a € (0,1], we can take

pij(z) =h(|zi —z]); z=(21,...,2,) €[0,00)", 1 < 2,5 <.

The condition holds if we choose ¢; < ¢g and h(z)=c;/z for
z>1 and h(z)=ciz for z <1.

12



Under the same condition, let us consider the default times

Tn—k ;= inf{t > 0: X,_x(t) = 0}.

13



Under the same condition, let us consider the default times
Tn—k ;= inf{t > 0: X,_x(t) = 0}.

By the comparison theorem, we can estimate the tail
probability distribution

o0 1 a2 81 a?
P _ t) < — “2ds; t>0.
x(Tnk > 1) < /t sI'(d1) (23) € »as; -

where a := X, _(0) is the initial value of the sum and

5(n— k) (S
0= —+ sup ‘ Z Z(mj—m&)-p&,j(z)‘ < 2.

n z€[0,00)" " j 1 51

13



Similarly, define

b= — f } S (2 -
0 n xElgloo i=1j=1 :L’l p&’] )

and we obtain

2

e 1 a do a2
P x> t)> — “2ds; t>0.
w(Tnk > )_A sI‘(&o)(2s) e"zds; t>

14



Probability that many defaults occur in a given time.

15



Probability that many defaults occur in a given time.
If there is no monetary flow p;(-) =0,

Py (# defaults before time ¢ is k)

- ¥ [ﬁ(l—[l"(){g 0);6/n))|[ TI IT(X:i(0);6/m)]

1§21<<ek§n Jj=1 e(llr 75)

where

oo 2.6 22
IT(a,9) ::/ L (a—> e 2sds; a€l0,00).
t

15



Unfortunately, it seems very hard to obtain an explicit
theoretical answer, for any given lending preference py;(-).

Instead, here let us discuss a Monte Carlo scheme on how to
compute the small probability,
Py(n=k) =E[lg=ry]; k=1,...,n,

where

n
=) 1 min Xi(s) <
£ min i(s) < b}
for some threshold b > 0, following the interacting particle
method proposed by CARMONA, FOUQUE & VESTAL (’09).

16



Interacting particle system algorithm [DEL MORAL AND GARNIER (’05)]
Intuition: consider a background MC (£x)xr>0 with transition
kernel Ky(€x—1,€k), and its history nx := (€o,...,&x), £ >0.
Given fi : R¥*1 5 R, define

Ye(fie) = <fk (me)- [] Gr(me) )

1<t<k

with a multiplicative potential function, and its normalized

measure
Ve (fx)
Yk(1)

vk(fe) =
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Interacting particle system algorithm [DEL MORAL AND GARNIER (’05)]
Intuition: consider a background MC (£x)xr>0 with transition
kernel Ky(€x—1,€k), and its history nx := (€o,...,&x), £ >0.
Given fi : R¥*1 5 R, define

Ye(fie) = <fk (me)- [] Gr(me) )

1<t<k

with a multiplicative potential function, and its normalized

measure (f )
vl
vilfi) = (1)
Since Yr4+1(1) = Yk(Gr) = ve(Gr)Vk(1) =+ =[1;=1 ve(Gy),
E(eme) =7 [] (G D =wlfc T] (G)™") ] ve(Ge).
1<e<k 1<e<k 1<e<n

Here we can use a recursion: 71(-) = Ki(&o,"),

Gr—1(Mk—1)

vi(r) = /Vkl(d'flkl)ykl(le)

Ki(ne-1,7)-

17



Dividing the time interval [0, T'] into L equal subintervals
[(—1)T/L,LT/L] with £=1...,L, we simulate M random
chains

(v =XOUT/L),mDCT/ L) hee<r; §=1,..., M,

where X(U)(.) is the jth simulation of X (-) and m) is the
7th simulation of the vector m(-) := (ma(-),...,mn(-)) of the
running minimum

m;(t) = minp<s<t Xi(s), for 1<2,7<n, 0<t<T.

1K



After initializing the chain, for each £=1,..., L, repeat the
following selection and mutation stages

> (Selection Stage). Sampling M new particles from
{Y)}1<;<ns with Gibbs weights

(TTA2) (ST er

1=1 7j=1:=1

) . [mn( m((e-1)T/L), X (eT/L»}
v A0 (e—1)7/1)
for each 5y =1,..., M with some a > 0.

?

» (Mutation Stage). Running Euler scheme to get the new
value Ye(i)l, 7=1,...,M, starting from the new particles
sampled in the above.

19



The probability estimate of Px(n = k) is given by

R 1 M (J)( ) L—

== 43 (e 1150 ) ([ 5 1149):
7j=1 a=1l1

for k=1,...,n, where Al%) is the corresponding number to n

in the jth simulation for 7 =1,..., M.

20



Extreme examples

Set x=(1,...,1), § =2 and p;;(-) specified as in the first
picture, T=1, n =100, M = 1000 (# copies), L =10 (#
subintervals of Time), a = 0.0001, and run the system with the
sub-subinterval for the Euler scheme in the mutation stage as
0.001 to compute

n
Px(n=k) = PX(Z l{minOSssTXi(s)gb} =k); k=12,...
1=1

21



b=0.1 (left), b=0.001 (right).
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For error analysis and comparisons with other methods in this
context see CARMONA & CREPY (2009). O
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Stochastic stability

()= X0+ [ [543 () - Xi(w) - pus (X ()] dw

n =

+2 Xi(w)d Wi(u); t=1,...,n,0<t< 0.
0

When a bank ¢ has the maximum amount of reserve at some
time among all the banks, all the outflow from 2 to 5 is
positive, and it gives the negative pressure to the reserve X;.

29



Stochastic stability

()= X0+ [ [543 () - Xi(w) - pus (X ()] dw

n =

+2 Xi(w)d Wi(u); t=1,...,n,0<t< 0.
0

When a bank ¢ has the maximum amount of reserve at some
time among all the banks, all the outflow from 2 to 5 is
positive, and it gives the negative pressure to the reserve X;.

Let us consider the deviation Y'(-):=(Y1(:),.--, Yn(")):
Vi) = X() — o X()

n
from the average X(-) for 1 =1,...,n. Since Z Y:(-) =0,

1=1

Y (-) takes values in IT:={y € R™: Zyi =0}.

299 =1



Proposition[d > 0 and symmetric p; ;(-) = pj,:(-)] If there
exist positive constants csz, ¢4 such that lending preference
p;,;(-) satisfles a stability condition,

e
minnf {p(e) ¢ n 5| > e} 2 6>,

then the II-valued process Y'(:) is stochastically stable, that is,
there exists a probability measure p(-) such that the SLLN

im [ (v )ai= [ fwula) as

T—oo T

for every bounded measurable function f:II — R.

24



Proposition[d > 0 and symmetric p; ;(-) = pj,:(-)] If there
exist positive constants csz, ¢4 such that lending preference
p;,;(-) satisfles a stability condition,

e
minnf {p(e) ¢ n 5| > e} 2 6>,

then the II-valued process Y'(:) is stochastically stable, that is,
there exists a probability measure p(-) such that the SLLN

im [ (v )ai= [ fwula) as

T—oo T

for every bounded measurable function f:II — R.
Corollary. Under the same condition, the (n x n)

matrix-valued process (X;(-) — X;(-))i<ij<n is stochastically
stable.

24



Induced random graph

Considering each bank as a node (vertex) and the connection
between two banks as a link in the graph. Here we consider the
connection between bank 7 and bank 7, in terms of the
(absolute) monetary flow |X;(-) — X;(-))|- pi;(X(:)) between
banks 1 <1< 75 < n.

For each fixed r > 0, we connect banks 2 and j with indicator
Xi,jir(-) =1, if the monetary flow is larger than r, otherwise
X'i,j;r(') = 0, that iS,

Xigir() = 1160 pig(X()2ry 1< HI<n.
For a directed graph, replace the indicator by the sign

sgn [(X;() — Xi(1) pis(X())—7r]; 1<4,7<n.

14



Statistics of graph

» For each 7 the number of links is called degree of bank z:
degree; () := 3271 Xigir (+) -

» distance dist; ;(-) between 7 and j is the number of
minimum links from 7 to 7.

» eccentricity of 4 is maxj<j<n[dist;;(})], 1=1,...,n, and
the diameter of the network is max;<;<j<n[dist; ;(-)].

> average distance 57 ;dist;;(-)/n of bank 1 also
indicates where the bank : is allocated in the network: the
bank with smaller average distance is located closer to the
center of network.

» influential domain (# of maximal connected nodes in the
network), betweenness centrality of bank i, affinity, ...
[Miiller(’06), Soramaki et al (’06), Santos & Cont (2010)]

26
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Figure: The graphs of the network for the initial, after 200 steps and
400 steps, respectively.

Figure: A snapshot of core Fedwire Interbank Payment Network in
2004 [Soramaki et al. (’06)].
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Stability of induced graph

Corollary. Under the stability condition, if every lending
preference = = (z1,...,2,) — p; ;(z) depends only on z; —z;
for 1 <1,7 <n, then the monetary flow

F; i (t) = (Xi(t) — X;(t)) - pi;(X(t)) of the drift coefficient is
stochastically stable, and hence so are the statistics (degree,
distance, eccentricity, diameter, ... ) of the induced graph.

2R



Degree

Simulated, expected degrees v.s. the ranking of banks for
different r.
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Exit system

Default banks are removed from the whole system to the
cemetery A.

Let us denote the zero sets by Z;:={z € [0,00)" : z; = 0},
1=1,...,n, and the initial index set Ip:={¢:1 <7< n} with
size |Ip|=n.
Every time when their monetary reserves become zero, or in
one of the zero sets, that is, at the first default time

gy = inf{t >00=0: X(t) € U?lei}

we remove all the default banks to A and keep the survivors’
index I, :={7: X;(01) #0 nor X;(01) # A}.

20



For the survived banks i € I,, we restart the process with the
following SDE:

+ D (X(w) = Xi(u)) 'pz‘,j(X(u))] du

+2 Xi(w)d Wi(u);i € I, o01<t<oy,
0

where X () :={X;(-):t € I,,} is defined until the next default
time o2 :=inf{t > 01 : X(¢) € Uicr,, Z:}-

We continue this exit rule, and build a probability space
(Q,F,{F:},P) by pasting the probability measure locally at
every stopping times (01,02,...) of defaults.

Let us define the index process
I :={i: X;(t) # 0 nor X;(t)#A}.

21



Proposition. If the preference satisfies

(2—8)n + 6k
sup |z —zj| - pis(x) < =:2c¢p;
26[0,00)"‘ ]‘ ]( ) n(n—l)(n—k) 0

then for every k € {k|(2—08)n+dk >0}N{1,...,n—

Py(Xe, (t) =+ = Xq,_,(t) =0,

for some ¢ < o, and for some(¢y,..

where o, :=inf{t > 0:|[;| <n—k+1}.

29
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Competition or Cooperation?

Example. [§ = 2] If the preference satisfies

2
sup |z — 3| pij(z) < —,
z€[0,00)" n

then only one bank can survive eventually

lim || =1, a.s.
t—oo

for every initial point x € (0,00)" and inf{¢t >0:|;| =1} < 0.
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Competition or Cooperation?

Example. [§ = 2] If the preference satisfies

2
sup |z — ;|- pij(z) < —,
z€[0,00)" n
then only one bank can survive eventually
lim || =1, a.s.
t—00
for every initial point x € (0,00)" and inf{t >0:|[;| =1} < 00.
On the other hand, if

: 2(n—1)
£ P P AR
ze[lg}oo)n!xz 2| pi(z) > = —,

then every bank can survive

Py(|I:]=n, forallt>0)=1, a.s.; z€(0,00)".
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» Toy model on interbank lending system.
» Risk of multiple defaults.
» Future research:

» Bridge to Economics literatures - Social welfare “too big to
fail”? Lending cost and overnight rate. Relation to the
whole economy.

» Discontinuous or heterogeneous p;;(-),0(-), rank-based
coefficients. (c.f. IcHIBA ET AL. (2011))

» Moment Stability, Lyapunov function, Perturbed system,
Concentration-type inequalities

(c.f. IcHIBA, PAL, SHKOLNIKOV (2011))

» Control problem for stochastic delay equation. Game

theoretic approach, Mean-field type approximation.
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Mean-field limit

If the lending preference (p;;(+))i<i j<n is strictly positive in
the sense that

min inf i(z) >0
1§i<j§nx€(0,oo)"pw( )>0,

then the stability condition is not satisfied. In particular, it
contains the case if

pij()=1/n; 1<4,5<n.
As n — 0o, we may consider a mean-field limit:

d Xi(t) = (m— X;(t))d t+24/ Xi(t)d Wi(2),

where m is the mean of the monetary reserve distribution.

214



